
How does continuous
delivery work?

Components of continuous
delivery

Trends in continuous
delivery

Continuous delivery vs.
deployment

Build, test and deploy code changes quickly for ongoing
software delivery

What is continuous
delivery?

Learn more about it

IBM solutions

Combine continuous delivery and
deployment for application release.

Release automation tools

View all IBM
continuous delivery
solutions

Get test results back to
development faster and reduce
risks and costs.

Continuous software testingToolchains for app
delivery

Embrace DevOps by using
toolchains that support your app
delivery tasks.

Best practices for
implementing CI/CD

Article

DevOps: A complete guide
Learn

Continuous integration
Learn

Application Release and
Deployment for Dummies

eBook

Explore continuous
delivery tutorials

Training

PrivacyContact IBM Terms of use Accessibility Feedback Cookie preferences

Discover

Marketplace

Redbooks

Services

Industries

IBM Research

Case stidues

Demos

Financing

IBM Business insights

About IBM

Careers

Events

Latest news

Investor relations

Diversity and inclusion

Corporate responsibility

About IBMInformation for:

Developers

Business partners

Federal and state contracts

Connect with us

Support

Find a sales rep

Find a business aprtner

Contact IBM

United States — English

How does continuous
delivery work?
Continuous delivery is an automated process to get code into
production quickly. It’s designed to provide customers with fast
access to the latest software updates so they can take
advantage of new features quickly.

The continuous delivery pipeline is the core component of a continuous delivery
process. The pipeline starts with code builds, then proceeds through the quality
assurance, testing, staging and production environments to automate the flow of
IT delivery tasks.

Continuous delivery pipelines

The goal is to run pipeline jobs in a repeatable way with minimal human
intervention to release apps into production at any time. A continuous delivery
pipeline works across any combination of on-premises, cloud and mainframe
applications.

A starting point for DevOps

Many organizations use continuous delivery as the first step in adopting a
DevOps approach. Most of the tooling and processes that make up the core of
DevOps culture also support critical elements of continuous delivery, such as
continuous integration for code builds and continuous testing for automated
testing.

Tutorials

Adopt DevOps using
continuous delivery

Configure pipelines on
Kubernetes

Components of continuous
delivery
Code moves through continuous delivery pipelines in distinct
phases from build to production. While continuous delivery
supports a variety of practices and tools, there is no one-size-
fits-all approach. Those that adopt DevOps generally use the
same automated processes in all environments to improve
efficiency and reduce risks.

A software development process where
developers integrate their code frequently—at
least once a day—into builds in order to
identify integration issues earlier, when they
are easier to fix.

Continuous integration

The ability to replace manual coordination
with templates to automate release
processes and collect approvals. It works
with a variety of cloud or on-premises
software development tools.

Continuous release

A strategy in software development where
code changes to an application are released
automatically into the production
environment. This automation is driven by a
series of rigorous predefined tests.

Continuous deployment

The process of incorporating automated
feedback at different stages of the software
development lifecycle to support better
speed and efficiency when managing
deployments.

Continuous testing

Processes in the pipeline

Learn more about
automated testing

Continuous delivery builds on continuous integration. Avoid branches that
delay integration so that every change is built, tested and deployed together
for the fastest feedback.

If you use continuous delivery to make every change releasable, you must
include updated user documentation, operations runbooks and information
about what’s changed, for auditing purposes.

To successfully implement continuous delivery, you need a well-
constructed, automated delivery pipeline to ensure all your code releases
move into your test and production environments in a consistent way.

Build automated processes into your software development lifecycle to
create a good, reliable delivery pipeline, not only for code builds and
deployments but also for the creation of new development environments.

When you push a new function to production, you must first validate it
before deploying it to the public-running application instance. This helps
ensure application availability while you make frequent, continuous delivery
updates.

If two parts of a system must be tested together, they should be released
together so you know that the parts of your system are compatible. Release
automation tools are good at coordinating this kind of delivery. Alternatively,
fully decouple.

Embrace trunk-based development

Make every change releasable

Deliver through an automated pipeline

Automate as much as possible

Aim for no downtime

Release at the granularity of test

Core principles

Tools for continuous delivery

Use repeatable templates for build and deployment
automation. If a template works for one of your apps, it
should work for others. Don’t let every team struggle with
configuration themselves.

Repeatable templates

Define stages in a pipeline to automatically build when
you push changes to a linked repository and then deploy
to one or more environments. You can also incorporate
builds and deployments into your toolchains to connect
builds to other tools.

Pipeline

Use toolchains to build, deploy and manage your
applications. These integrated sets of tools can make
development and operations tasks repeatable and
manageable. They can include cloud services, open
source tools and third-party tools.

Toolchains

Find tools for team collaboration to support planning,
source-code management and testing processes. This
allows team members to work with more speed and
visibility into processes.

Collaborative tools

Build your own toolchain

Use instrumentation that exposes where your team is
moving quickly and where things bog down, providing a
guide to becoming “more continuous.”

Instrumentation

The use of continuous delivery is likely to expand rapidly in the
next few years as more organizations realize its value. Software
updates can be delivered with greater frequency and fewer
errors, while accelerated customer feedback cycles help identify
new features that customers care about.

Trends in continuous
delivery

AI’s role in continuous
delivery

You can expect the various components of continuous delivery to converge
into integrated suites over time, making the entire process easier to manage.
Vendors will need to react quickly to this rapidly changing market by proving
they can support expansive tool and data integration. Also look for more
integrated reporting in the tool suites.

AI, machine learning and other automation technologies will become key
components of a continuous delivery pipeline. These technologies may
initially be used in the release automation process, where you can set up
rules and incorporate data from different sources to determine release
readiness, or in the deployment process to confirm deployments.

AI and machine learning

Rapid convergence of tools

Continuous delivery vs.
deployment
While “continuous deployment” and “continuous delivery”
may sound like the same thing, they are actually two
different approaches to frequent release. Both may be
referred to as “CD,” which can add to the confusion. Here are
some examples of the differences between the two.

Manual approval is required to deploy

Automate the process through deployment

New builds performed in a continuous delivery solution are automatically
deployed into a quality-assurance testing environment. Automatic tests are
run for any number of errors and inconsistencies; then builds are readied for
deployment.

After the code passes all tests, continuous delivery requires some sort of
human intervention to approve deployments for production. The deployment
itself is then performed by automation. This manual step is common in
heavily regulated industries.

Deploy to production-like test environments

Push builds to production manually

What you get with continuous delivery

The added value of continuous
deployment

Continuous deployment is the natural outcome of continuous delivery done
well. Eventually, manual approvals bring little or no value and merely slow
things down. They are eliminated and continuous delivery becomes
continuous deployment.

Look in depth at
deployment automation

Continuous deployment takes automation a step further. The tests and
developers are considered trustworthy enough that an approval for
production release is not required. If the code passes all tests, deployment
automatically proceeds.

A fully realized pipeline

No more manual deployment approvals

Continuous delivery

Stages in a continuous delivery pipeline

for

